Formation of 1-octen-3-ol from Aspergillus flavus conidia is accelerated after disruption of cells independently of Ppo oxygenases, and is not a main cause of inhibition of germination
نویسندگان
چکیده
Eight-carbon (C8) volatiles, such as 1-octen-3-ol, are ubiquitous among fungi. They are the volatiles critical for aroma and flavor of fungi, and assumed to be signals controlling germination of several fungi. In this study, we found that intact Aspergillus flavus conidia scarcely synthesized C8 volatiles but repeated freeze-thaw treatment that made the cell membrane permeable promoted (R)-1-octen-3-ol formation. Loss or down regulation of any one of five fatty acid oxygenases (PpoA, PpoB, PpoC, PpoD or lipoxygenase) hypothesized contribute to 1-octen-3-ol formation had little impact on production of this volatile. This suggested that none of the oxygenases were directly involved in the formation of 1-octen-3-ol or that compensatory pathways exist in the fungus. Germination of the conidia was markedly inhibited at high density (1.0 × 10(9)spores mL(-1)). It has been postulated that 1-octen-3-ol is an autoinhibitor suppressing conidia germination at high density. 1-Octen-3-ol at concentration of no less than 10 mM was needed to suppress the germination while the concentration of 1-octen-3-ol in the suspension at 1.0 × 10(9) mL(-1) was under the detection limit (<1 µM). Thus, 1-octen-3-ol was not the principal component responsible for inhibition of germination. Instead, it was evident that the other heat-labile factor(s) suppressed conidial germination.
منابع مشابه
Growth Inhibition of Aspergillus flavus Isolated from Pistachio by Secondary Metabolites
Pistachio nut is a strategic product throughout the world, especially in Iran. There are some problems that reduce production and export of pistachios, for example, postharvest fungi, especially Aspergillus spp., that lead to production of mycotoxins. Nowadays the use of chemical and synthetic antifungals is discouraged and reduced because of health risks to mankind and nature. In present study...
متن کامل1-Octen-3-ol inhibits conidia germination of Penicillium paneum despite of mild effects on membrane permeability, respiration, intracellular pH, and changes the protein composition.
1-Octen-3-ol is a volatile germination self-inhibitor produced by Penicillium paneum that blocks the germination process. The size of conidia treated with 1-octen-3-ol was similar to that of freshly harvested conidia. Exposure to 1-octen-3-ol resulted in staining of 10-20% of the conidia with PI and TOTO, fluorescent DNA probes that cannot enter cells with an intact membrane, whereas only 3-5% ...
متن کاملGermination of penicillium paneum Conidia is regulated by 1-octen-3-ol, a volatile self-inhibitor.
Penicillium paneum is an important contaminant of cereal grains which is able to grow at low temperature, low pH, high levels of carbon dioxide, and under acid conditions. P. paneum produces mycotoxins, which may be harmful to animals and humans. We found that conidia in dense suspensions showed poor germination, suggesting the presence of a self-inhibitor. A volatile compound(s) produced by th...
متن کاملThe effects of low concentrations of the enantiomers of mushroom alcohol (1-octen-3-ol) on Arabidopsis thaliana
"Mushroom alcohol," or 1-octen-3-ol, is a common fungal volatile organic compound (VOC) that has been studied for its flavor properties, its effects on fungal spore germination, mushroom development, and as a signaling agent for insects. Far less is known about its effects on plants. We exposed Arabidopsis thaliana seeds, under conditions conducive to germination, to high (10 and 100 mg/1) and ...
متن کاملArabidopsis thaliana as Bioindicator of Fungal VOCs in Indoor Air
In this paper, we demonstrate the ability of Arabidopsis thaliana to detect different mixtures of volatile organic compounds (VOCs) emitted by the common indoor fungus, Aspergillus versicolor, and demonstrate the potential usage of the plant as a bioindicator to monitor fungal VOCs in indoor air. We evaluated the volatile production of Aspergillus versicolor strains SRRC 108 (NRRL 3449) and SRR...
متن کامل